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1. INTRODUCTION

Let C(J) denote the set of continuous, real valued functions on the interval
I =[-1,1], and let Z,,, C C(I) be a Haar subspace of dimension »n -- 1.
Denote the uniform norm on C(I) by || - ||. For fe C(I) with best approxima-
tion B,(f) from #,_, there is a positive constant » such that foranype #,,,,

lp— BNl < r(lf—plt =1 — BN (L1

Inequality (1.1) is the well-known strong unicity theorem [3, p. 80]. The
strong unicity constant M,(f) is defined to be the smallest constant r such that
(1.1)is valid forall pe 2, .

The dependence of M, (f) on f, n, and I has been the subject of several
recent papers [1, 4, 5, 6, 7, 9, 10]. The present paper is concerned with the
dependence of M,(f) on n. Of the references mentioned above, [4, 6, 9, 10]
examine the behavior of the sequence

{M(f N0 - (1.2)

The problem of characterizing those functions fe C(I) for which the
sequence (1.2) is bounded is posed by Poreda [9]. Poreda constructs a func-
tion fe C(I) for which lim, sup M,(f) = +cc. Henry and Roulier [6]
demonstrate a class of functions F C C(J) for which lim,, M, (f) = + oo for
each feF. Henry and Roulier also conjecture that the sequence (1.2) is
bounded only if fis a polynomial function. Schmidt [10] enlarges the class F
for which lim,, M,(f) = + oo, and proves that there exists a function g € C(I)
for which

linm inf M,(g) =1, li{ln sup M, (g) = +oco. (1.3)
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Although in some sense Schmidt actually constructs the function g satisfying
{1.3), in reality the function is neither explicit nor easily analyzed.

In Section 3 of the present paper an explicit function satisfying (1.3} is
given and analyzed.

Cline [4] examines the order of the strong unicity constant for fe C{(X}, ¥
finite. If #y_, = I1, the set of polynomiais of degree at most N, and if
2(xy = x¥=1 then Cline [4] proves for an appropriate finite set X C 7 that
My(p) = 2N + 1. Thus Cline establishes the exact order of M, {p) for 2
particular n, namely n = N. We note for n > N that M, (p) = 1. Hence the
precise order of M, (p) is known for every n > N.

In the next section the concept “precise order of M, (f)” will be considered.
In this regard, let f'e C(I), and suppose there exist positive constants x and S,
a natural number N, and a positive real valued function ¢ with domain the
natural numbers satisfying

ac(n) < My(f) < Be(n) (1.4)

for all n > N. Then the precise order of M (f) is Olc(n)) for n sufficiently
large.

To date the precise order of M, (f) has not been established for any nor-
polynomial function fe C(J).

The next section is devoted to showing that the precise order of the strong
unicity constant M, (f) for the function f(x) = 1f{x —a),a =2, xe/, and
P =1, , 15 0(n).

2. PrRECISE ORDERS

Let fe C{), f¢ #,.1, and define S(Z,. ) ={peZ,.::'lp) = 1}. Then
it is known [1, 2] that

% == — Wy {v—1 It !

M) =1, Jnof | max sen[f(x) — B )] p (2.0

where
Eon(f) = Ixe L1 f(x) — Bu/)x) = | f — B 2.2)

Hereafter #,,; = II,,. The first theorem is due to Cline {4], and will be
utilized in the subsequent analysis.

TueoreM 1. Let fe C[—1, 1] with f¢ll,. Let B(f)ell, be the best
approximation to f, and for any Chebysher alternation {x,, 2t for f — B.{(f}.

deﬁ"e Gin EHn b.} qm(Akn) - Sgn[f(xlm) - n(f)()‘kn)]s k= 07 1 n— I
k=i,andi=0,1,.,n 4+ 1. Then M (f) < maxoc;<cpr{l Gin I}
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Henry and Roulier [6, p. 88] observe that if E,;(f) contains exactly
1 -+ 2 points, then the conclusion of Theorem 1 becomes
M) = max (i g} 23)

The next theorem is an extension of the precise order results of Cline
alluded to in section 1.

THEOREM 2. Suppose that f is a polynomial of degree exactly N + 1, and
that B(f) elly is the best approximation to f. Then the precise order of
M, (f) is 0(c(r)), where ¢(N) = N and c(n) = 1 for n > N.

Proof. We need only show that there exist positive constants o« and B
such that
aN < Mw(f) < BN'

Let f(x) = an18nn(x) + pn(x), where gy,o(x) = x¥** and py€lly. Then
By()(x) = an1Ba(gni)(x) + palx) without loss of generality assume that
ay. > 0, and let

en(f)x) = f(x) — Ba(f)(x).
Then it is well known that

ex(£)x) = B Cuna(),

where Cy,, is the Chebyshev polynomial of degree N - 1. Furthermore, the
set of extreme points Ey_4(f) is precisely the N 4 2 extreme points of Cy,; .

Therefore the polynomials {g;y}/7;' defined in Theorem 1 satisfy
en(/)x) g
L — g = 2N X — Xpn)s 2.4
” eN(f)” q 'V(x) }:[0 (\’ Xf V) ( )

kg

where Ey,1(f) = {xn}nts and where (2.4) follows from the classical remain-
der theorem of interpolation theory [3, p. 60]. Equation (2.4) may be rewritten
as

(2 — 1D Cyyy(x)
N+ Dx — x;)°

gin(x) = Cna(x) — (2.5)
x # x;and i = 0,..., N+ 1. Hereafter if A(x*) = 0 and if A(x) = A(x)/(x — x¥),
x 5% x*, then h(x*) is defined to be equal to #'(x*). Equality (2.5) now implies
that

(1 — x®) Chya(x) — (1 — xD Cfm(xz-)]

gin(x) = Crya(x) + [ N F Dx — x)
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and consequently an application of the mean value theorem yields

Chra(1 = &) — 26Choale) ]

N+ 1

gin(x) = Crna(x) + [

for some € between x and x, . This last equality implies that

. € "Y+ € i N . 1)5 CAH,_ e)
Fan(x) = Caa(%) — [ via(€) + A(r :1 vl }

3

which in turn implies that
L g:v(¥)| < BN, (2.6)

i =0,1,., N - 1,and where § is independent of V. On the cther hand, {(2.5)
implies that
(I — x Claxp)

N+ 1 ’

Gin(xs) = Cnialx) +
i = 1,..., N. Therefore

gin(x) = Cnpa(x) — (V + 1) Crialxy)
== __'NCN+1(x1')’

-~
[\
-3
o

i=1,2.., N Finally, (2.6) and (2.7) combine tc establish that
aN < ” qz'NH < B-N» [ = 119 2:“-: A’Ya

where & is also independent of N. Slight modifications in the above arguments
produce similar bounds for gyy and gy, ~ . Therefore there exists positive
constants « and B such that

aN < | g.vl < BN, [=0, .., N1

An application of equality (2.3) completes the proof.
The next theorem is the main theorem of the present section.

TuEOREM 3. Let f(x) =1/(x — a), where x€l and a =2, and let
B (f)yell, be the best approximation to f, n =0, 1, 2,.... Then for n > 1
the precise order of M,(f) is O(n).

Since f"™(x) = O for any x € I, n = 0, 1,..., the extremal set (2.2) contains
exactly # + 2 points. Thus equality (2.3) is valid, n = 0, 1, 2,... . Consequently
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to prove Theorem 3 it is sufficient to establish that there exists positive
constants « and f3 such that

on < max || gl < Bn, (2.8)

S o<isatl

foralln > 1.
The proof of Theorem 3 will be accomplished through a series of lemmas.
For each lemma, it is assumed that the hypotheses of Theorem 3 are satisfied.

LemMa 1. Let the alternating set E, ,(f) be labeled —1 = xy << x; < -

<Xp <Xpy = 1. Define Q,,,€ll, . to be the unigue interpolating polynomial
defined by

Opia) = (=%, k=0, 1L.,n+ L. .9)

Then for n = 1 the q,, defined in Theorem 1 is given by

— . an;18(%)
40 = [Q0ial) — s e rae = @10

i=0, 1,.., n+ 1, where a,, is the leading coefficient of Q.1 , and where
g(x) = (x* — D(n(@® — 12 Cy(x) + (ax — 1) Co(x)).  (2.11)

Proof. As required in Theorem 1, we verify that g,, is the unique element
of I1, satisfying

Gin(Xe) = sgn[f(xp) — Bu(f)xn)]; (2.12)

k=01,..,n+1ks%ii=01,.,n+1.
If e.(f)(x) = f(x) — Bu(f)(x), then it is known [8, 12] that

(@ — @ — 1y

en(/)0) = Sy cosal + 3, @.13)
where cos 8 = x and
cos § = ”;‘_—al : (2.14)
Therefore
- core

Comparing equality (2.15) with (2.12) establishes that ¢;, must satisfy

qin(xk) = (_1)n+k’ (216)
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k=0..,n+1Lk&k=17=01,.,r+ 1. Thus

Gi(X) = [Qralx) — OuaX — Xg) =+ (X — X)X — X)) (x — Xpu1)l
(2.17

It is also known [8] that the extremal set E,,{f) consists of precisely the
points — I, -1 and the »n zeros of the polynomial

n(@ — D2 Colx) + (ax — 1) Culx). (2.18)

This observation and (2.17) now imply (2.10).
The next three lemmas establish that | ¢,, | < Bn.

Lemva 2. Let @,y €11,y be the unique interpolating polvnomial satis-
fring (2.9). Then | Q11 = Om) for n > 1.
Proof. 1t is known [8] that
(ax = 1) G0 + 2 @ = 7 (2 — 1) ) = (v — @ 2O
i ce )
(2.19
Define J,., by

Do) = (@x — 1) Gx) + - (@ — DAR (2 — 1) Cifw). (2.20)
Then from (2.15) and (2.19) we have that
Q71+1(xk) = (xk - a)(_l)?1+k? k= 0’ 15“‘} n—+ 1: (225}

and (2.19) implies that | 0, ()| <a — x for xel — E,4{(f}). Now @,
can be written

n+1 (_1)zz+k (u(_\‘)

0,.(x) = — (2.22)
Q) 1.-2::0 (x — xp) w'(xp)
where as usual
w(x) = (x — x)(x — xp) = (x — x ) — x4 (2.23
Since x ,..., x.. are the zeros of (2.18), (2.23) becomes
e (@ — D2 C(x) + (ax — 1) Ci{x) 5 540
@lx) = (x b [ n 27 Y(a? — D2+ ) } (.24}

640/2713-7
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Let 4, = n2"Y((a® — 1)'/2 + a). Then (2.20) and (2.24) imply that

A0’ (x) = m20,1(x) + 2x[n(@® — DY2 Co(x) + (ax — 1) Ci(x)]
+ (x — a) Cy(x). (2.25)

Since || Qnyq | = a+ 1 and || C,, || = n2, (2.25) yields
Ayl o'l < 2n[2(a + Dn + (a® — 1)H2]. (2.26)

Evaluating (2.25) at x = x;,, employing (2.21), and utilizing the fact that the
X, are the zeros of (2.18), k =0, 1,..., n + 1, yields

A’ (xp) = (xp — [A(—1)"t* - Crlx)). 2.27)
From (2.19), (2.15), and (2.18) we have that
(@v — 1) Cylon) + 7 @ — D2 (52 = 1) i) = (. — (1),

and that
n(@® — D2 Colxp) + (ax, — 1) Co(x) =0,

k =1, 2,..., n. Eliminating C,(x;) from these two equations resuits in

Cifx) = (— 1y M DT

a— x;
Substituting this expression into (2.27) produces
Aw'(x) = (= D" H¥(x, — a) n? — n(a® — 1)/2]. (2.28)
Thus for k =1, 2,..., n,
Ayl w'(xy)| = (@ — D r* + (a2 — D2 (2.29)
On the other hand, direct substitution into (2.25) results in

A0’ (1) = 2n[(a — Dn + (a® — 1)112] (2.30)
and
Apo'(—1) = 2(—D*nj(@ + Dn + (@® — 1)/2]. (2.31)
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Returning to {2.22) and employing the mean value theorem yields

ntl e
O,.4(x) = — )k M )
0) = 3 (s L0
where €,(x) is between x and x, , kK =0, 1,..., # + L. Therefore
* et 1 A B
. < ] . h N G
Oreall < el ey T T & Tty

Utilizing (2.26), (2.29), (2.30), and (2.31) then results in

2a + n+ (@ — DY | 2a+ n—+ (@ — )2
@+ D+ @—1D72 7 (@a—Da+ (@ — D72

1Qnnl <

2a + Hyn + (@ — 2 .
b) 2.3Z
D e e 1 @32)
Thus || @,_, 1| = O(n) forn = 1.
LemMa 3. Let g be defined by (2.11). Then for n = 1
2() | — o), (2.33)

P n((@* — DY + a)(x — x;) |
xeli=01,..,n+ L

Proof. The mean value theorem implies there exists an €;{x} between x
and x; such that g'(e,(x)) = g(x)/(x — x;). The definition of g and equations
(2.24) and (2.26) imply that

lg'll < 2n[2(a + Dr 4 (@ — 14 (2.34}
Utilizing (2.34) in the left side of expression (2.33) vields the result.

LemMA 4. Let a,,, be the leading coefficient of the poiviomial Q,.;
defined in (2.9). Then forn > 1

271-1(a %_ (a'Z — 1)1‘/'2)
B (e +1)

<y | <27 Ha + (@@ — DY, (2.35)

Proof. Denote by a,., the leading coefficient of the polynomial J,.,;
defined by (2.20). Then comparisons of Q,,; and @, , reveal that

n+1 (_ 1)”+];

On_1 — Z

i @' (x)
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and

_ n+1 l)n—H: (-xk . a)
a-‘rz - ’
ih Z0 w (xk)

where w'(xy), K =0, L,..., n 4 1, is given by (2.25).
On the other hand, sgn w'(x,) = (— 1) % see [11, p. 35]. Therefore

n+1 1
el = L T 2.36
el = 2 TG (2.36)
and

_ n+1 a — Xk
D Tk 2.37
Bl = 2 oy (2.37)

But a = 2; therefore (2.36) and (2.37) imply that
s | < 1Gna ] <@+ D) [ @i | (2.38)

But (2.20) implies that
|Baia| = 27a + (@ — 1)),

This equality and (2.38) imply (2.35).
Lemmas 1-4 now facilitate the proof of Theorem 3.

Proof of Theorem 3. According to earlier observations we need only
verify inequality (2.8). But from Lemma 1

_ an+1g(x)
qz'n(x) - Qn+1(x) - 2;1_1n((a2 _ 1)1/2 + a)(x - xi) -

Therefore

The conclusions of Lemmas 2, 3, and 4 now combine to imply for all
n > 1 that

g || < B, (2.39)

for some positive constant B8, i =0, 1,..., n + 1. To conclude the proof of
theorem 3 we must show that there exists a positive constant « such that for
n=1

0<1<n+l 1 gin || = an.
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Ifi=n + land x = 1, then (2.10) and (2.11) imply that
_ 2ap4[n(@® — DECY) + (@ — 1) C(1]]

In-rnll) = —1 20 in((g? — 142 — a) B
Therefore
o s 2l @ = P e — DRl
: ‘jn-t—i,?’s( )1 = 2’2*1”((612 _ 1}1/2 _;_ (!) <.

Now {2.35) implies that

} 2 _ o |
L’:’n+1,n(1)‘| = m [n(al _ 1)1,3 + (a — 1} 712} 1
Therefore for n > 1 there exists an & such that
N paan ! = on.

Combining this result with (2.39) establishes (2.8), concluding the proof of
the theorem.

Remark. Although f(x) = 1/(x — a), a > 2 is the first nonpolynomial
function for which the precise order of M, (f) is knowsn, the authors conjec-
ture for any function g with g+ nenvanishing on 7 for # sufficientiy large,
that M, ( g) will be of precise order O(r). The primary difficulty in proving
this assertion by the above technique stems from the lack of information
regarding the distribution of the points in the extremal sei. The above
techniques may be applicable to other rational functions, see {12].

3. BEHAVIOR OF M (7}

In this section an explicit example satisfying (1.3) is constructed and
analyzed. As already mentioned in Section 1, Schmidt {10] has construcred a
g e C(J) for which (1.3) is valid. However, the analysis in {10] is somewhat
technical and requires the use of a theorem due to Wolibner [13] on poly-~
nomial interpolation. Because of this, the various degrees of the polynomials
utilized in [10] to construct the function g for which (1.3) is valid cannot be
explicitly exhibited. Consequently Schmidt’s construction ig basically an
existence construction.

To effect the construction of an explicit example for which (1.3} holds,
define the sequence {n,}5_, by 1, = 1, 1, = 3, and #;.., = m 2 Thus

n, = 357, k=1 (3.1»



288 HENRY AND HUFF

Now let

oo

fx) =Y 4G, —1<x<1, (3.2)
k=0
where

1
&y = W . (3.3)

By employing an argument similar to that given in [6, p. 91] it can be
shown that the f defined in (3.2) is the restriction of an entire function to the
segment [—1, 1] of the complex plane.

Now let
Pu®) = z 35C (3.
Then i
) = pa) = j_%l 3 Co (). 3.4

If x; = cos(in/m ), i =0, 1,..., npyq , thenforj > k 4 1,

n,-in'

= (—1)},

C,(x;) = cos
o5 = cos 7

i=0,.., B4y . Thusif enk( X)) = flx)— p,,,k(x), then (3.4) implies that

en(HOD) = (—1F Y ap = (=1l en, I

j=R4l
i =0, 1,..., npyy . Since e, (x) alternates n;,, + 1 times,
B, (f)(X) = pn(x), M == M yeesy Mg — L.
Appealing to (2.1) with 2,,,, = Il , we have that

Mo (f) = inf { max sga[f(x) — Bp(f)x)] p(x)}. (3.5)

1
DES(an) n];+1(

Let p be any polynomial in S(I1,, ), and suppose that | p(x*)| = 1, x* € [-1, 1].
Then for some i*e&{l...., Agp}, X €[xpmy, x;], Where E, (f) ={xq, x(,....
xnkH}. Without loss of generality assume that

sgn[f(xs) — B (f)(x:4)] p(x*) =1
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{otherwise replace x;. by x,._;). Now

T T
PXpe — Xpg | < =T
?11;,‘,1 3“

Then

XE

max sgnlf(x) — B, (F)0)] p(x) = sgnlfixid — Buyl(Nxi)] plicic
nk+1-

=1 — | plx) — p(x™)

=1 — "p{e)|xp — x¥|

)
hig

\Y%

77-9
gt

where e is between x;: and x*. Recalling the definition of #, , this inequality
implies that

1 T
Mnk(f)EI—F.

Since for every n, M, (f) > 1, this inequality implies that

ligln inf M (f) = 1.
Cn the other hand,

enlf) = f(x) — Bu(f)x) = flx) — By (f)x),

m = ny,..., My — 1. Therefore if m = n; 4y — 1, then the alternating set
consists of precisely #,.; -~ | points, namely the #,., + 1 extreme points of
C,,,, - An argument similar to that used to prove Theorem 2 can now be

1
amployed to establish that there exists positive constants « and S such that

g — 1) < M’nk+1—l,(f) < Bl — D
for all k sufficiently large. Therefore

ligln sup M, (f) = 0.

In terms of inequality (1.4), the above analysis establishes the existence of a
function ¢ {(as described above (1.4)) satisfying c(xn,) = 1 and e{n,, — 1) =
ni. — 1, for k sufficiently large. It would be of interest to discover the values
of ¢ for all natural numbers n == N.

The analysis of the present section leaves unanswered the question as to
whether or not the sequence (1.2) can be bounded for any non-polynomial
function, but does, in combination with the work of Schmidt [10], suggest
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that the key to resolving the question rests with proving or disproving that
there exists a function fsuch that e,(f) has more than n + 2 extremal points
for every .

4. OBSERVATIONS AND CONCLUSIONS

In the preceding sections we analyze for certain functions f'e C() the
behavior of the strong unicity constant as a function of changing dimeunsion.
The problems discussed at the ends of Sections 2 and 3 certainly merit
further investigations. )

In addition, the possible relationship between the strong unicity constant
and the classical Lebesque constant [11, p. 90] needs investigating. The
analysis of Section 3 suggests to these authors that for functions f with
nonvanishing derivatives f ™, n > N, that an identifiable relationship between
these two constants may exist.
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